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Abstract--Particle dispersion in large-scale dominated turbulent shear flow is investigated numerically 
with special emphasis on the effects of the vortex-pairing phenomenon. The particle dispersion is visualized 
numerically by following the particle trajectories in a flow consisting of large vortices which are 
undergoing pairing interaction. The flow field is generated by a discrete vortex method. Important global 
and local flow quantities from the numerical simulation compare reasonably well with experimental 
measurements. 

For both cases of point sources with continuous particle release and an initially distributed line source, 
the particle dispersion results demonstrate that the extent of particle dispersion depends strongly on the 
Stokes number, the ratio of the particle aerodynamic response time to the characteristic time of the 
vortex-pairing flow field. Particles with relatively small Stokes numbers disperse laterally at approximately 
the same rate as that of the fluid particles and particles with large Stokes numbers disperse much less than 
the fluid particles. Particles with intermediate Stokes numbers (0.5-5) may be dispersed laterally farther 
than the fluid particles and may actually be flung out of the vortex structures. Due to the strong panicle 
entrainment power, the flow during the vortex-pairing process seems to produce higher particle lateral 
dispersion than the pre-pairing and post-pairing flows. 

1. I N T R O D U C T I O N  

Particle dispersion by turbulent shear flows is of  importance, for example, in liquid fuel spray 
combustion, pulverized coal combustion and many energy-related processes. The dispersion of  fuel 
droplets caused by the fluid turbulence is a dominant factor that affects the stability and 
performance of  a combustor. A coal-fired power plant relies on the proper dispersion of particles 
in the feed jets to provide a well-mixed gas-particle flow for efficient combustion. The proper design 
of these flow processes depends heavily on the understanding of  the interactions of panicles with 
the turbulent flow structures. 

The dispersion of particles in turbulent flows has received some attention only in certain types 
of turbulence. The traditional approach is to regard the process as a Fickian diffusion process and 
to quantify the mass transfer of  particulates by a diffusion coefficient and a particle concentration 
gradient. This model may be adequate for near-isotropic turbulent flows such as that generated 
by a grid; however, the majority of  particle mixing and dispersion problems involve shear-driven 
turbulent flow in which the mean velocity gradient produces non-isotropic large-scale turbulent 
structures. 

Recent breakthroughs in turbulent flow research have demonstrated that turbulent flow driven 
by an asymmetric velocity gradient, such as mixing layers, jets and wakes, contains quasi-orderly 
large-scale structures (Brown & Roshko 1974; Winant & Browand 1974; Yule 1980). Brown & 
Roshko's (1974) shadowgraphic pictures of mixing layers between dissimilar gases clearly indicated 
the existence of organized large-scale structures in the turbulent flow region. Winant & Browand's 
(1974) dye visualizations of a mixing layer between two water streams demonstrated that the 
growth and the momentum transport of  the mixing layer were controlled totally by the interactions 
of these large-scale structures. They also discovered that the basic mechanism of large-scale 
structure interactions is through the "pairing" of two adjacent large vortex structures of similar 
size. After rotating around each other, these two vortices will gradually merge and eventually lose 
their original identities to form a single structure twice the size of the former two. This process 
also explains the growth mechanism of  a mixing layer. The measurements of  Browand & Weidman 
(1976) confirmed that these structures consist of  concentrated vortices. Based on their mea- 
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surements, Browand & Troutt (1980. 1985) reported that large-scale structures in a mixing layer 
are basically two-dimensional in nature and the bulk of the momentum carried by the fluid is, 
accordingly, also two-dimensional. Since the large-scale vortex structures carry most of the 
momentum in a shear layer, it is reasonable to assume that large-scale structures are instrumental 
in controlling particle dispersion. Consequently, it is believed that the "pairing" process plays a 
dominant role in the particle dispersion mechanism in a turbulent shear layer. This hypothesis is 
further supported by Yule's (1980) experiments of liquid droplet dispersion in an air spray; he states 

"Small droplets closely followed the gas flow and given a good visualization of the 
large eddies. However larger droplets with their smaller drag/inertia ratios, are seen 
to leave these eddies and penetrate the outer potential flow. Realistic modeling of 
drop environments and thus vaporization and burning, requires modeling of these 
large eddies and their interactions with the droplets." 

Based on the above suggestions (Yule 1980), the current study is intended to provide such a 
modeling for large-scale eddies and their interactions with the particles. 

As also pointed out by Yule (1980), the ratio of drag to inertia determines the extent to which 
particle motion will be influenced by the turbulent structures. Another way of representing the ratio 
of drag to inertia is through the ratio of the aerodynamic response time of the particle to a 
characteristic time scale of the large flow structures, as suggested by Gore et al. (1985). The 
aerodynamic response time of a particle is defined as ZA = ppd~/18 1~, where pp is the particle density, 
dp is the particle diameter and/~ is the fluid viscosity. This quantity represents the time required 
for a particle, released from rest in a uniform flow, to reach 63% of the flow velocity (provided 
Stokes' drag law is applicable). It is simply a measure of the aerodynamic responsiveness of a 
particle. The time scale of the large vortex structure in the mixing layer, for example, may be 
approximated by ~F = 6/AU,  where 6 is the width of the mixing layer and AU is the velocity 
difference between the two free streams. 

In this study, the ratio of the two time scales, rA/Zr, also called the Stokes number, St (Crow 
1982), is used to characterize the effectiveness of large-scale structures to move the particle laterally 
in a mixing layer. It is plausible to assume that for St >> 1, the particles will not respond to the large 
eddies significantly and will exhibit little dispersion. For St << 1, the particles will follow closely the 
streamlines in the vortex structures and should disperse at the same rate as the mixing layer. For 
Stokes numbers ranging between these two extremes, particles .may be captured by the vortex 
structures but eventually they may be flung out of the structure, as seen by Yule (1980). Depending 
on the values of the Stokes number that dictates the trajectory of a particle in a vortex structure, 
it is certainly possible for some of them to be flung beyond the boundary of momentum mixing 
region. 

In summary, the bases for this paper are as follows: first, the momentum of a turbulent mixing 
layer is carried basically by two-dimensional large-scale vortex structures and "vortex pairing" is 
the dominant momentum transport mechanism that is responsible for the entrainment and growth 
of the mixing layer; second, the Stokes number is the key parameter for measuring the effectiveness 
of particle dispersion in large-scale vortex structures. 

A discrete vortex method is adopted first to stimulate the vortex-pairing phenomena in a 
turbulent mixing layer. Quantitative particle dispersion in a vortex-pairing flow environment are 
then examined by numerically tracing their trajectories. 

2. MATHEMATICAL MODEL 

2. I. Flow-field simulation 

As shown in the visualization pictures of Brown & Roshko (1974) and Winant & Browand 
(1974), a mixing layer is composed of an array of vortex pairs, as shown in figure 1, and every 
pair is undergoing pairing interactions. Also, each pair may be considered as a unit cell that 
constitutes the entire mixing layer except that for any adjacent units, the size of the unit on the 
downstream side is approximately twice that on the upstream side, as discovered by Winant & 
Browand (1974). 
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Vortex-pairing phenomenon 

simulated by a discrete vortex 
I 
I in the present study 

I 
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A copy of the flow visualization picture 

of vortex pairing [taken from figure 6(a) 

of Winant & Browand (1974)] 

Figure 1. Vortex-pairing phenomenon in a turbulent mixing layer. 

Due to the similarity in every aspect, except the size difference, between all the vortex pairs in 
a mixing layer, the current numerical simulation is designed to address only a typical pair, as 
marked by the dashed square in figure 1. The simulation starts with two separate identical vortices 
and continues through their pairing interaction until they merge to form a single vortex twice the 
size of the two initial vortices. 

Discrete vortex simulation of turbulent flows, first proposed by Rosenhead (1932), has been 
successfully applied to a mixing layer (Ashurst 1979; Inoue 1985) and to a free jet (Acton 1980). 
In this study, the two initial large vortex structures and their pairing interactions are simulated by 
96 discrete elementary vortices. Initially these elementary vortices arranged to form four identical 
sinusoidal rows, as shown in figure 2. Each row consists of two sinusoidal waves with wavelength 
2. Two wavelengths are required to represent two large vortex structures and their subsequent 
pairing interactions. The amplitude of the sinusoidal wave and the separation distance between the 
rows are in general not sensitive parameters as long as they are relatively small, according to Acton 
(1976) who did a parametric study on these two parameters. In this study, the amplitude is set at 
0.1 and the separation distance is 0.0975. 

The essence of the discrete vortex method is that at any instant the flow field is determined by 
the superposition of the velocities induced by all discrete elementary vortices in the flow, therefore 
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Figure 2. Initial distribution of vortices in the numerical model. 
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the locations and the strengths of all elementary vortices should be known in order to calculate 
the velocity distributions. In turn, the elementary vortices, which are equivalent to masstess 
particles, are carried around by the flow field they induced. As a result, we need to specify the 
elementary vortices for the entire mixing layer not just for the vortex pair. One simple method to 
model a representative vortex pair, as suggested by Acton (1976), is to extend from this pair to 
both positive and negative infinities by repetition of this basic unit (two sinusoidal wavelengths 
shown in figure 2) in a cyclic array to form an infinite shear layer. In this manner, the results for 
this basic unit vortex pair will be free of boundary effects and truly representative of a typical unit 
structure. The stream function, if(x, y), for the flow in a cycle of this infinite shear layer may be 
written as (Lamb 1945) 

~, (x ,y )=~-~  ~ a~In cosh - c o s  - , [1] 
k= l  

where a is the length of this cycle; in this analysis, a = 22. Nv is the total number of vortices in 
this cycle; G~ and (xk, Yk) are the strength and position of the k'h vortex, respectively. Accordingly, 
the induced velocity at any point (x, y) in a cycle of length a and Nv elementary vortices, which 
is a unit of an infinite row of repeating cycles, is given by 

u (x, y) = ~ [21 
k~2a  cosh r~(y_--y~) - c o s  

a 

and 

..v~ G~sin (2rc(~ - xk) ) 
v(x, y)  = Y. [3] 

Equations [2] and [3] are then applied to evaluate the velocity profiles in the cycle at any instant, 
depending on the distribution of vortices. Since each elementary vortex moves with the local 
velocity induced by the rest of the vortices in the system, the same velocity field is used to transport 
the massless vortices in the cycle. In numerical calculations of the vortex transport, a first-order 
integration scheme is involved. If (x;,., y~) is the position of the ith vortex at jAt time (At is the 
time-step size), then the location of the ith vortex at ( j  + l)At, (x~ +t, y~+t), is calculated based on 
Euler's method as follows: 

and 

x4-' = x4 + .(x~, J; )at  [4] 

),~+t = y~ + v(x~, y~)At, [5] 

where u(xJ, l,y~) and v(x j, yJ) are obtained from [2] and [3]. 
The reason for adopting the first-order Euler method is based on the justification given by Inoue 

(1985). The scheme requires much less computation time than other schemes of high-order 
accuracy. Recent investigations of the discrete vortex method have revealed that the numerical 
errors caused by the time integration introduce numerical viscous effects in the motion of vortices. 
As pointed by Kuwahara & Takami (1983), the numerical viscosity introduced as a result of 
numerical errors is actually similar to the effect of turbulent viscosity. The appropriateness of 
Euler's method in the current numerical integration is further supported by the satisfactory quality 
of the flow results shown in the Results and Discussion. 

The strength of each vortex is assumed equal and is determined by 

(AU)22 
G ~ = ~ ,  k = l , 2  . . . . .  96, [6] 

Nv 

where AU is the velocity difference between the two free streams of the mixing layer. In the current 
model, the upper free stream is moving at - U  and the lower free stream at U and therefore 
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AU = 2U. A total of  96 vortices distributed along two wavelengths and in four rows was suggested 
by Acton (1980) and adopted in this analysis to give the shear layer a more detailed definition. 
In order to avoid the unrealistically high induced velocity when two elementary vortices come too 
close, the so-called vortex blob with a finite smooth core, suggested by Chorin (1973), is adopted 
for each elementary vortex in this calculation instead of point vortices. 

In this numerical model, the length scale of  the system is chosen to be the wavelength, 21 of  the 
initial sinusoidal formation of  the discrete vortices. It is noted that the size of the two initial 
large-scale vortices formed after the roll-up from the sinusoidal wave, is comparable to 2, as shown 
in figure 3. The characteristic time scale of  the flow field is then defined as, 

22 2 
TF = zX--U = U" [71 

The dimensionless time is then given as 

t 
7" = - .  [8] 

TF 

All the velocities and lengths are non-dimensionalized by U and 2, respectively. 

2.2. Particle dispersion 

A Lagrangian approach to predict the particle motion in a mixing layer is detailed as follows. 
The trajectory of  each particle in the flow is predicted directly from the equation of  motion. The 
basic assumptions in the particle motion analysis are: 

(1) all particles are rigid spheres with diameter dp and density pp; 
(2) the density of the particles is assumed large compared to the density of the fluid; 
(3) particle-particle interactions are neglected; 
(4) the effect of the particles on the flow is neglected. 

Based on the above assumptions it is generally accepted that the dominant force on each particle 
is the drag force from the ambient fluid (Cliff et al. 1978). Consequently, forces on the particles 
such as the virtual mass force, pressure gradient force and Basset force are neglected in this model. 

The non-dimensional equation of motion for a particle according to the length and velocity scales 
chosen above can be written as 

d r  = ( V - V p ) ,  [91 

where Vp is the dimensionless instantaneous particle velocity, V is the dimensionless instantaneous 
velocity of the fluid, f is the modifying factor for any deviation from the Stokes' drag and St is 
the Stokes number---defined as the ratio of  the particle aerodynamic response time to the flow-field 
time scale: 

ppd~ 

S t =  18/4 ;. , [10] 

U 

/4 is the fluid dynamic viscosity. The factor f is well-represented (Clift et al. 1978) for particle 
Reynolds numbers < 1000 by 

f = 1 + 0.15 Reg '3, [11] 

where R% is defined as 

Rep 

With the 

IV - vp lap 
V 

v is the fluid kinematic viscosity. 
Re = U2/v, and the non-dimensionalized particle size, "/d = dpl2, [12] can be rewritten as 

[12] 

introduction of  the flow-field Reynolds number, 

R% = IV - Vp lYa Re.  [I 3] 
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In [7], the Stokes number is related to the flow-field Reynolds number, the density ratio, 2~ = pp, p 
where p is the fluid density, and the non-dimensionalized particle size, ;.'~: 

I 2 St = ~7ayoRe. [14] 

In this analysis, the density ratios, based on those for gas-particle and gas-liquid droplet flows, 
range from 500 to 2500. For most types of  actual flows, the Stokes number is usually of the order 
of unity, however, it could vary from as little as 10--" to as large as l03, depending on the size and 
mass density of  the particles. Since the flow simulation is based on the assumption of large 
Reynolds number inviscid flow, the choice of  flow Reynolds number should be consistent with the 
flow assumption. In this analysis, the flow-field varies between l0 ~ and 4 x I0 ~. 

It should be noted that according to [14], for a given Reynolds number and density ratio, each 
Stokes number value corresponds to a specific 7a. Therefore, variation of the Stokes number 
represents the variation of dimensionless particle size in the calculation if Reynolds number and 
7. are held constant. 
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3. R E S U L T S  A N D  D I S C U S S I O N  

First the flow-field solutions are presented. With starting positions as shown in figure 2 for all 
the vortices in the system, figures 3(a-h) show the subsequent development of the shear layer as 
a function of the dimensionless time. The two-wavelength sheets first roll up to form two separate 
large-scale structures, as shown in figure 3(a). Each is of the size of the wavelength 2. While the 
two large vortex structures are rotating about their own axes, they are also rotating around each 
other and begin to interact with each other. As the interaction continues, the two gradually coalesce 
and lose their individual identities. At T = 3.0, a larger single vortex, which is approximately twice 
the size of the two initial structures, is formed as a result of the coalescence of the original two 
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smaller vortex structures. This process is called the "pairing" process, as reported by Winant & 
Browand (1974). More qualitatively, we computed and plotted the streamlines at various stages 
during the pairing interaction in figure 4(a-h). It clearly supports the above assessment of the 
pairing process. 

Due to the turbulent nature of  the flow, it is important to present the time-averaged quantities 
of  the flow field. Ordinarily, the time-averaged quantities are defined in an Eulerian coordinate 
system where time averaging is performed on a variable, such as velocity, at a fixed location. In 
the current Lagrangian modeling, the coordinates are fixed with the typical vortex pair, while in 
Eulerian coordinates, this typical vortex pair will be convected downstream. Therefore the 
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equivalent time-averaged turbulent quantities in the current Lagranian coordinates are obtained 
by taking the space average over quantities that are located with equal spacing in x but have a 
common y-coordinate at a particular instant. Aref and Siggia (1980) used the same method for 
computing the equivalent time-averaged quantities in the study of a typical vortex pair by the 
vortex-in-cell method. Some basic theoretical considerations of turbulent shear flow, such as 
statistical homogeneity along the shear layer, asymptotic behavior and self-preservation, were also 
computed in their study. In this simulation these quantities are also calculated to check the quality 
of the flow solutions. 

In checking the self-preservational aspect of the flow, one needs to scale all the velocities by AU 
and the length dimension across the shear layer by the time-dependent momentum thickness, O(T), 
which is defined according to Browand & Weidman (1976) as 

O(T)=f:~:I~ uO"T)-]d,~--~ _ ] t151 

The variation of 0(T) with respect to time is shown in figure 5, and it is approximately linear during 
the vortex-pairing period. 

The mean velocity distribution at different y-locations across the shear layer is calculated by 
following averaging technique, based on the equivalent time-averaged concept discussed above: 

m 

ti(y, T )=  --1 ~u(x, ,y ,T)  [16] 
m i ~ l  

and 

if(y, T) = v(x~,y, T), [17] 
t= 

where m is the number of points used in the averaging and is equal to 100. Figure 6(a) shows the 
calculated mean velocity profiles at three different times. The boundary conditions, i.e. 

lim a(y, T) = -T- U, [18] 
5'~_+ :c 

are clearly satisfied. The self-preservation characteristic of the flow is verified in figure 6(a) where 
the mean velocity is scaled by AU and the distance across the shear layer by O(T). Velocity at three 
different times all converge into one curve. This result is also in good agreement with those of Aref 
& Siggia (1980), Browand & Weidman (1976) and Stuart (1967). The experimental values of 
Browand & Weidman (1976) are shown ( 0 )  for comparison purposes. 

The longitudinal and transversal turbulence intensities are obtained by the following equations: 

(U--7~)I/2 = ~1 i=, ~ [U(Xi' y' T ) -  ff(y, T)] 2 [19] 

and 

(v'2)ln = m i [v(xi, y, T ) -  6(y, T)]: [201 

The results for the above turbulent quantities are shown in figures 6(b), (c). It is seen that some 
scattering of the calculated data is present in the region near the center of the shear layer. Similar 
scattering is also found in the simulation of Aref & Siggia (1980) even though they used 4096 
vortices in their calculation. The self-preservation is valid in these distributions except near the 
center region. 

Even though the current results of turbulence intensities compare well with the numerical results 
of Aref & Siggia (1980), but the experimental results of Browand & Weidman (1976) indicate lower 
magnitudes in turbulence intensites. It has been a uniform trend in many reported results that 
turbulence intensities calculated in numerical simulations by the discrete vortex method are always 
some_._what larger than those measured in experiments. It is of interest to note that the magnitude 
of (u'2) 1:2 is always less than that of (v'2)t/2, which agrees with the experimental measurements of 
Browand & Weidman (1976). 
M.F. 13,6.--E 
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The Reynolds stress, another important quantity of turbulent flow. is calculated by the following 
equation: 

u ' t , ' = -  [u(xt,y. T ) -  if(y, T)l[t'(x,, y, T ) -  t~O ', T)]. [211 
m i ~ l  

Since the gradient of the mean velocity distribution dff(y. T)/dy is negative, the Reynolds stress 
should remain positive. The result is shown in figure 6(d), which agrees well with that of Aref & 
Siggia (1980). 

Based on the above results and the comparisons with experiments and other numerical results, 
we believe that the flow-field simulations are reasonably accurate. 

Next we discuss the interactions of particles with this large-scale vortex pair, especially the effect 
of the pairing process on the particle lateral displacement. First, some typical particle trajectories 
are given in figures 7(a-g) for particles released into the flow field at different stages of the 
vortex-pairing process. The other parameters which need to be specified in obtaining the results 
if figures 7(a-g) are given as: 

Re = 20,000, flow-field Reynolds number; 

(x, y) = (0, - 0.1), particle starting position; 

(u, c,) = (1, 0), particle starting velocity; 

-/p = 1500, particle~fluid density ratio. 

Based on figures 7(a-g), we may summarize the important findings as follows: 

1. In figure 7(a), particles released at T = 0.0125 interact mostly with the flow field 
during the pre-pairing period, when the two vortex structures still have separate 
identities but some interactions between them have begun. It is evident that the 
trajectories of the particle with St = 0.01 are similar to the flow streamlines. 
Therefore particles with St = 0.01 are assumed to represent the fluid particles in 
the dispersion study and their dispersion is used as a reference for comparing 
the dispersion of other particles. It is noted that the Stokes number is equal to 
the dimensionless diameter of the particle when Reynold number and 7p are held 
constant, as in the cases presented in figures 7(a-g). As to the flow in the 
pre-pairing stage, the vortex structures enhance the particle displacement only 
for relatively small particles [St ~< O(0.1) in this analysis]. 

2. Particles released at T = 0.3125 interact with the flow field during the later stages 
of pre-pairing as well as during the early stages of pairing. The effects of the 
vortex structure are similar to those in figure 7(a) but the displacement is 
increased from 0.2 to 0.4 for St = 0.I as far as the highest point of the trajectory 
is considered. 

3. The particles will interact with the flow field during most of the pairing process 
if they are released to the flow at T = 0.6375. As seen in figure 7(c), the pairing 
process clearly has the strongest effect on the particle lateral displacement. As 
shown by the trajectories, the flow during pairing seem to have the maximum 
power of entraining particles and setting them into vortical motion. Only 
particles with St = 2 and 5 were seen to penetrate through the vortex structure 
without being entrained into circular motion, particles will then be flung out of 
the structures from various different positions depending on their Stokes 
numbers. The maximum lateral displacement for the cases shown in figure 7(c) 
is achieved by the particle with St = 0.5. For the rest of the particles, the lateral 
displacement increases with increasing Stokes number for particles with S < 0.5, 
while it decreases with increasing Stokes number for particles with St > 0.5. This 
interesting finding is explained based on the balance between particle inertia and 
the drag force exerted by the flow. This balance determines at what point a 
particle gets flung out of the pairing flow loop. We will discuss this point again 
in more detail. 
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4. For the particles interacting with the flow field in the latter stages of the pairing 
process and post-pairing, the magnitudes of the displacement as shown in figure 
7(d) are similar to those shown in figure 7(a). 

5. Particles released after T = 1.25 generally interact with the post-pairing flow 
field. It can be seen that the displacement is rather limited for all Stokes numbers. 

We learn from these trajectories that particles with smaller Stokes numbers tend to follow the 
streamlines, while those with larger Stokes numbers tend to follow an almost straight path 
propelled by their large initial inertia. Intermediate particles will be entrained by the flow initially. 
but they will be flung out of the looping flow field at some point, depending on their inertia/drag 
ratio. Also, it seems reasonable to conclude that the flow field during the pairing process is capable 
of producing large particle dispersion, as a result of the strong entrainment power which induces 
the particles into vortical motion and then flings them out of the vortex structures. 

For the purpose of quantifying the dispersion characteristics of an evolving vortex structure 
during pairing process, the displacement of particles with respect to the fluid displacement is present 
in figures 8(a-e). The vertical coordinate is used to express the ratio of the maximum lateral 
displacement of each particle with a specific Stokes number relative to its starting position to that 
of the particle with St = 0.01, which is assumed to represent the maximum displacement of the fluid 
particles, as discussed earlier. This ratio will indicate the particle displacement relative to the fluid 
displacement. Except in figure 8(e), all particles are released at (0, -0.1) .  Figure 8(a) demonstrates 
the effects of various particle release times. Particles released at T = 1.575 and T = 1.700 are all 
affected by the pairing process as shown by the higher-than-unity portions of the curves. Particles 
released at T = 1.825 will interact with the post-pairing flow where the displacement of particles 
by the flow is much less extensive. For larger Stokes numbers, the particles also are not significantly 
affected by the flow. Figure 8(b) represents the effects of the density ratio. For St < 1, variation 
in 7p does not seem to change the displacement ratio at all. Some small changes are seen for large 
Stokes numbers. This can be explained by reviewing [14], which defines the relationship between 
St, 70, Yp and Re. In figure 8(b), the Reynolds number is held constant, any change in 7o will result 
in different "/d for a ~ven Stokes number; 7p represents the inertia ratio while 7d represents the drag 
ratio. Because the product of 70 and 7~ is a constant for the case in figure 8(b), the variation of 
',,p is roughly offset by the corresponding change in Ya for small, but not for larger, Stokes numbers. 

The effects of Reynolds number are shown in figure 8(c). For St < 1, Reynolds number does not 
make any difference in the displacement ratio. Only slight effects are seen for large Stokes numbers. 
In figure 8(d), particles are assigned different initial velocities. Higher initial velocity seems to 
decrease the displacement, as a result of the increased inertial. When particles are released at 
different starting points, as shown in figure 8(e), the displacement ratio does not seem to be sensitive 
to the starting locations as long as they are close the mid-plane of the vortex structures. 

Based on the results of the above single-source, continuous-released analysis, it is clear that the 
dispersion is strongly dependent on the stage of the pairing process at which the particle is released. 
Therefore it is considered undesirable to use a point source in the following statistical analysis 
which is designed to study the general dispersion capability of the entire pairing process. Instead, 
all particles are initially placed at y = 0 with equal spacing between adjacent particles. The initial 
velocities of all particles are set equal to zero. Since we are only concerned with lateral dispersion 
(y-direction), the )'-coordinate of each particle is recorded at each time step for further analysis. 
The distributions of particles as a function o f y  at various times and different Stokes numbers are 
presented in figures 9(a-j). The ordinate indicates the number of particles (n) in the range of 
( y  - ½Ay, y + ½Ay) divided by the total particles (N) in the system. In our analysis, Ay = 0.I and 
N = 100. 

In general, for small times the particle distribution profiles all resemble the Gaussian distribution. 
As time increases, the particle distribution profiles evolve into different shapes which depend 
strongly on the Stokes number. The distribution patterns may be categorized into three groups. 
For those particles with St < 0.1, the particle distributions will evolve from the initial Gaussian 
shape into a double-peak profile which is symmetric with respect to y = 0. This is as expected 
because the particles will follow the streamlines closely for the small Stokes numbers. A similar 
pattern results when particles were replaced by dye particles (fluid markers). For large particles 
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(St 1> 5), the distributions remain Gaussian all the time and it means that the particles are not 
affected significantly by the vortex structures. The lateral dispersion for this group is less than that 
o f  the first group. The third group consists o f  particles with intermediate Stokes numbers 
(0.5 ~< St ~< 5). If we compare figure 9(a), considered to be the case o f  particles closely following 
streamlines, with figure 9(e) or figure 7, we may  conclude that the lateral spread is most  extensive 
for the third group. Particles are seen outside the vortex structures, i.e. they have been flung out 
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of the vortex loops as evidenced in the single-point-source analysis [figure 7(c)]. It seems that there 
exists a specific range of Stokes number, at which optimal lateral dispersion may be achieved. 

Next we attempt to seek a correlation between the current discrete approach and the Fickian 
diffusion concept. The particle dispersion with respect to the mean displacement Y~ is defined as 

' i  D ~ ( T )  = ,~ (Y~ - Y~)-" [221 
/=1 

and 

i__ 72 
m Ni=[ 

where Y, is the lateral displacement of particle at time T, which is also the y-coordinate of the 
particle location at time 7". The average is taken over all the particles in the system. The dispersion 
curves of three distinct ranges of particle Stokes number, as discussed above, are shown in figures 
10(a--c). For large particles, the dispersion curves are approximately proportional to T'-. From the 
study of particle dispersion in homogeneous turbulent flow field (Hinze 1975), it is known that 

D ~ ( T )  = V':T'- [24] 

for short diffusion time T, in which V'-' is the particle turbulence intensity and this particle 
autocorrelation coefficient is ~-1. Since particles with large Stokes numbers are not affected 
significantly by the flow field, it is not surprising to find that the dispersion vs time curves as shown 
in figure 10(a) for particles with St > 5 may be represented by [24]. It is suggested that for large 
Stokes number cases, the large-scale structures may look like homogeneous turbulent flows to the 
particles because of their large size, high inertia forces and short residence time in the system. In 
figures 10(b, c) we show the time-dependent dispersion for intermediate and small Stokes numbers. 
Again the idea is that the dispersion of small Stokes number particles should be closely related to 
the fluid dispersion of the vortex structure because the particles closely follow the streamlines. Due 
to the similarity in the transport mechanism, the momentum thickness of the shear layer shown 
in figure 5 may be used to explain the following particle dispersion process for particles with small 
Stokes numbers. During vortex pairing, the rate of increase is at its highest and an apparent 
decrease after the pairing process is present in both figures 5 and 10(c). Figure 10(b) shows the 
transition phenomenon between large and small Stokes numbers. The magnitude of dispersion is 
also large, as expected. Figures 10(d-f) show the effects of the variation of 7p on particle dispersion. 
Similar to the displacement ratio discussed above, the effect of ).p becomes increasingly important 
as the Stokes number gets larger. Almost identical trends are obtained when the Reynolds number 
is changed from 10,000 to 40,000. The results are plotted in figures 10(g-i). 

We would like to emphasize that in this study we investigated specifically particle dispersion due 
to the "pairing process", which was discovered and has been verified by many experimentalists in 
turbulent shear flows. However, it is difficulty to perform any measurement of particle dispersion 
induced by a specific vortex pair in an experiment. Therefore, we have not found any published 
results of particle dispersion for comparison with the results of this work. 

4. CONCLUSION 

Numerical solutions for particle dispersion in a vortex-pairing flow are presented. The discrete 
vortex simulations of the local pairing phenomenon show reasonble comparison with the 
experimental flow visualization pictures. Qualitatively speaking, the computed mean velocity, 
turbulent intensities and Reynolds stress were also shown to be comparable to the experimental 
values and to numerical results obtained by other methods. In the analysis of the particle lateral 
displacement from a point source in the pairing flow, it is found that through examining the 
particles' trajectories, the vortex flow during pairing shows a distinctively higher capability to 
entrain the particles and disperse them more than both the pre-pairing and the post-pairing flows. 
This finding seems to be consistent with published results, which indicate that the pairing process 
is solely responsible for the entrainment of the ambient fluid and therefore accounts for the growth 
of the shear layer. Using fluid particle displacement as a reference, particles with small Stokes 
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numbers are displaced similarly to the fluid particles, particles with large Stokes numbers are 
displaced less than fluid particles. Particles with intermediate Stokes numbers, i.e. St = 0.5 to 5. 
are displaced more than fluid particles. For the case of a distributed initial line source, all particle 
distribution profiles resemble the Gaussian distribution in the early development of the pairing 
process. As time goes on, for small Stokes numbers, the particle distributions gradually evolve into 
an symmetrical double-peak profile. For intermediate Stokes numbers, the distributions are hard 
to generalize but they all show wider lateral spread. Similar trends in dispersion phenomena to 
those with a single point source are also found for the distributed source case. 

It should be emphasized that the particle dispersion results presented in this study should be 
considered to be of first order in circumstances when small-scale three-dimensional disturbances, 
which may show up after a transition point in a mixing layer, or forces other than drag force, could 
affect the particle dispersion up to second order. 

Based on this numerical study, we suggest that there seems to exist a specific range of the Stokes 
number at which optimal dispersion of particles in large-scale turbulent shear flows may be 
achieved. 
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